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Abstract Observational networks enhance real‐time situational awareness for emergency and water
resource management during extreme weather events. We present examples of how a diverse, multitiered
observational network in California provided insights into hydrometeorological processes and impacts
during a 3‐day atmospheric river storm centered on 14 February 2019. This network, which has been
developed over the past two decades, aims to improve understanding and mitigation of effects from extreme
storms influencing water resources and natural hazards. We combine atmospheric reanalysis output and
additional observations to show how the network allows: (1) the validation of record cool season precipitable
water observations over southern California; (2) the identification of phenomena that produce natural
hazards and present difficulties for short‐term weather forecast models, such as extreme precipitation
amounts and snow level variability; (3) the use of soil moisture data to improve hydrologic model forecast
skill in northern California's Russian River basin; and (4) the combination of meteorological data with
seismic observations to identify when a large avalanche occurred on Mount Shasta. This case study
highlights the value of investments in diverse observational assets and the importance of continued support
and synthesis of these networks to characterize climatological context and advance understanding of
processes modulating extreme weather.

1. Introduction
California's complex terrain, biogeographical diversity, proximity to the data‐sparse North Pacific Ocean,
and large population and economy provide an environment both dependent upon and highly susceptible
to weather and climate extremes (Cayan et al., 2016; Lundquist & Cayan, 2007). These include extreme pre-
cipitation events, flooding, land‐surface mass wasting, multiyear droughts and pluvials, heat waves, and
wildfires (Dettinger et al., 2011; Lamjiri et al., 2017; Oakley, Cannon, et al., 2018; Oakley, Lancaster,
et al., 2018; Ralph et al., 2006; Swain, 2015). Many of these extremes are projected to worsen or becomemore
impactful in a warming climate (Bedsworth et al., 2018).

Water resources in California rely on precipitation and snowpack resulting in large part from landfalling
atmospheric rivers (ARs) associated with cool season midlatitude cyclones (Figure 1a; Dettinger et al., 2011;
Rutz et al., 2014).While often beneficial, the hydrometeorological impacts associatedwith ARs also bring sig-
nificant emergency management challenges and expenses (Corringham et al., 2019; Ralph et al., 2019).
Managing and reducing these challenges and costs requires accurate understanding of what, where, and
when various impacts are occurring. However, weather models initialized over data‐poor locations such as
oceans (e.g., Nardi et al., 2018) provide inadequate information. This creates a need for networks of readily
available, high resolution, and diverse observations. Such networks facilitate tracking, evaluation, and antici-
pation of storm‐related impacts and impact‐triggering thresholds necessary for natural hazard early warning
and achievement of water resource management objectives (Moore et al., 2015; Oakley et al., 2017; Oakley,
Lancaster, et al., 2018; Ralph et al., 2014; Sterle et al., 2019; Uccellini & Ten Hoeve, 2019; White et al., 2013).
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To accommodate these data needs in California, a multitiered network of observations has been implemen-
ted and expanded since the early 2000s (Figure 1b; Ray & White, 2019; White et al., 2013). This network
evolved from the goal of understanding extreme events in California to a broader vision aimed at observing
the mountainous western United States (Ralph et al., 2014). It includes sensors with different levels of tech-
nology, novelty, and costs (see Table 1 for specific components used in the present study). It is supported by a
wide variety of agencies at the federal, state, county, and local levels as well as private groups. Some compo-
nents of the network, such as snow level radars and AR observatories (AROs), have been installed as part of
the jointly‐supported National Oceanic and Atmospheric Administration (NOAA)/California Department of
Water Resources Hydrometeorology Testbed (HMT) and are tracked by the NOAA Observing System
Council (White et al., 2013). Others, like the Global Navigation Satellite Systems/Global Positioning
System (GNSS/GPS) network, leverage sensors with differing primary goals to extend precipitable water
observations over land (e.g., Bevis et al., 1992). Lower tiers of the network include proven, cost‐effective

Figure 1. The Valentine's Day landfalling atmospheric river and select observations used in the study. (a) Satellite‐derived integrated water vapor (IWV; mm) at
1200 UTC 13 February 2019 showing the surface cyclone (labeled with a blue “L”) and the moisture plume (labeled as “atmospheric river”). (b) Map of
specific observations from California's multitiered observation network and focus regions of the study. Topography and observations for (c) Region I (southern
California) and (d) Regions II (southern Cascades and Sierra Nevada; section 5) and III (Russian River watershed (inset); section 6).
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Table 1
Observational Data Used

Network Details Additional information

Hydrometeorology Testbed (HMT)
West Legacy Observing Network

A California Department of Water Resources network installed
and operated by NOAA's Oceanic and Atmospheric Research
(OAR) Physical Sciences Division (PSD).

https://hmt.noaa.gov/
White et al. (2013)

Instruments include: precipitation gauges and disdrometers,
various wind and temperature profiling radars, GPS, stream
level loggers, soil moisture probes, snow pillows, and more.

Snow Level Radars NOAA Earth Systems Research Laboratory and California
Department of Water Resources joint radar network allowing
for novel measurements of bright band (melting layer) heights.

Johnston et al. (2017)

Atmospheric River Observatories
(AROs)

Evolved from HMT‐West, a small network with a combination of
three to four instruments including radar wind profilers, GPS
IWV sensors, standard surface meteorology stations, and in
some cases snow level radar.

White et al. (2009)

GNSS/GPS A global network originally developed for positioning, navigation,
and time transfer that now has many more uses including
atmospheric/climate studies due to their ability to measure
zenith tropospheric delay as a function of temperature,
pressure, and water vapor.

https://www.suominet.ucar.edu/index.html
https://hmt.noaa.gov/

Atmospheric River Reconnaissance Observations by aircraft dropsondes (flight paths shown in
Figure 4a) and buoys in the Northeast Pacific Ocean intended
to improve existing forecasts of ARs while supporting research
to improve weather models, data assimilation methods, and
reconnaissance targeting methods.

http://cw3e.ucsd.edu/arrecon_overview/
Ralph et al. (2020)

Radiosondes Radiosonde observations are made throughout the country by the
National Weather Service and compiled and made available by
the University of Wyoming. Several other research groups, such
as CW3E at Scripps, also record radionsonde data.

http://weather.uwyo.edu/upperair/sounding.
html

Automated Local Evaluation in
Real‐Time (ALERT)

Wireless sensor network providing local agencies with real‐time
flood warnings, but can also monitor wind, temperature,
humidity barometric pressure, soil moisture, fuel moisture, and
more.

https://www.alertsystems.org/index.php/
about-us

USGS Water Data Nationwide network of USGS sites with real‐time or recent and
historic stream gage data.

https://waterdata.usgs.gov/nwis/sw

Palomar Observatory National Weather
Service Cooperative Observer
(COOP) Network

Long‐term, daily observations of temperature, precipitation,
snowfall, and occasionally evaporation or soil temperature.
Forms the United States component of the Global Historical
Climatology Network‐Daily.

https://www.ncdc.noaa.gov/data-access/land-
based-station-data/land-based-datasets/
cooperative-observer-network-coop

MIMIC‐TPW2 IWV observations An experimental global product of satellite‐derived total
precipitable water using morphological compositing of
microwave integrated retrieval system (Liu & Weng, 2005)
retrievals from operational microwave frequency observations.

http://tropic.ssec.wisc.edu/real-time/mtpw2/
Wimmers and Velden (2010)

gridMET A daily gridded data set of high‐spatial resolution (6 km) surface
meteorological variables covering the contiguous United States.

http://www.climatologylab.org/gridmet.html
Abatzoglou (2013)

USGS Northern California Earthquake
Data Center

USGS program, including comprehensive monitoring of
earthquakes, that is part of the National Earthquake Hazards
Reduction Program (NEHRP).

https://ncedc.org/

Sub‐daily meteorological observations Sub‐daily observations supported by various agencies and
available from the California Data Exchange Center (CDEC)
and MesoWest.

mesowest.utah.edu/
http://cdec.water.ca.gov/

NOAA California‐Nevada River
Forecast Center (CNRFC)
freezing level forecasts

Twice‐daily forecasts of freezing level height produced using
forecaster input and a blend of operational models (e.g., GFS)
using a “top down” approach to find the elevation of the mean
areal freezing level (0°C) isotherm. 150–200 m are subtracted
from this elevation to account for the time it takes a falling
hydrometeor to melt. During flood events, forecasts may be
issued every 6 hr.

https://www.cnrfc.noaa.gov/about/products_
summary.php

https://www.cnrfc.noaa.gov/about/hydromet_
forecasting.php
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technology augmenting existing standard weather stations such as soil moisture, snowwater equivalent, and
snow depth. Higher tiers, such as snow level radar, targeted dropsondes from offshore aircraft‐based
reconnaissance flights, and gap‐filling radar, are more novel and costlier (Cifelli et al., 2018; Cordeira
et al., 2017; Johnston et al., 2017; White et al., 2013).

Here we demonstrate how select data from this network, in conjunction with additional available
atmospheric and hydrologic modeling and observational data, provide a posteriori insight into statewide
processes and impacts resulting from an extreme winter AR event, the “Valentine's Day Storm” spanning
13–15 February 2019 (Figure 1). This storm satisfied the duration and integrated water vapor (IWV) trans-
port criteria to be categorized as an AR 5 (extreme or exceptional) using the AR scale of Ralph et al. (2019).
Storms of this magnitude reach northern California approximately once every 4 years (Ralph et al., 2019).
Three‐day accumulated precipitation exceeded 200 mm (Figure 2a) and increased soil moisture percentiles
by as much as 25 points (Figures 2b–2c). The observed rainfall totals exceeding 200 mm during the storm
satisfy the first level of the R‐CAT scale, which documents extreme multiday precipitation (R‐CAT 1;
Ralph & Dettinger, 2012). Such events have return periods ranging from approximately 2 to 10 years in
the mountains of California (Lamjiri et al., 2020).

Impacts from this storm were widespread and varied. Documented impacts included riverine and alluvial
fan flash flooding, evacuations from burned areas, avalanches, landslides, and disruptions to transportation
and commerce from road closures. We focus on three different regions of California (Figure 1b) to highlight
the value of monitoring networks in documenting an extreme hydrometeorological event. The regions
include southern California (region I), the southern Cascades and Sierra Nevada (region II), and the
Russian River watershed (region III). We begin with a synoptic meteorological analysis (section 3).
Observations and impacts from each region are presented as separate subcase studies (sections 4–6) intend-
ing to highlight the added value the network provides with respect to understanding storm processes and
impacts in particular locations. We end with discussion regarding how observational networks support
the achievement of broader water resource management and natural hazard mitigation goals amidst a chan-
ging climate in a geographically diverse state (sections 7–8).

2. Observational Data and Model Products Used

Our primary focus is on ground‐based sensors with real‐time data availability (Ralph et al., 2014). To provide
a holistic, comprehensive look at the event statewide as well as to supplement interpretations of
ground‐based sensors, we also utilized additional observations (Table 1). These observations include radio-
sondes; dropsondes from flights over the North Pacific Ocean; ALERT tipping bucket precipitation gauges;
and data from four U. S. Geological Survey (USGS) Northern California Seismic Network seismometers

Figure 2. Event precipitation and root zone soil moisture conditions prior to and following the storm. (a) Accumulated
13–15 February 2019 precipitation from the 4 km gridMET product (Abatzoglou, 2013). (b) Antecedent soil moisture
percentiles on 12 February 2019 estimated from the Variable Infiltration Capacity model (Liang et al., 1994). Black
contours enclose percentiles within the top tercile (>66%). (c) Change in soil moisture percentile between 12 February
and 16 February 2019. The gray and black contours enclose changes exceeding 10% and 25%, respectively.
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installed on Mount Shasta (Northern California Earthquake Data Center (NCEDC), 2014). The seismic
instruments are used to constrain the timing of a large avalanche event on Mount Shasta (southern
Cascades) during the storm.

In addition to observations, we leverage operational and reanalysis‐based atmospheric model output to sup-
port interpretations made using observational data and provide broader context. We incorporate
0.5° × 0.625° horizontal resolution, 3‐hourly output from the Modern‐Era Retrospective Reanalysis
Version 2 (MERRA‐2; Gelaro et al., 2017) to estimate return intervals of integrated vapor transport (IVT)
and IWV. These return intervals are calculated using meteorological winters (December–February) span-
ning 1980–2019. IVT is a useful metric to include because it shows promise in advancing forecast lead time
(Lavers et al., 2016). We use potential vorticity on the 330 K surface from the higher resolution (compared to
MERRA‐2) hourly 0.25° Global Forecast System final analysis (GFS; NOAA Environmental Modeling
Center, 2003) to diagnose Rossby wave breaking (RWB), a common precursor to extreme midlatitude
weather events (e.g., Hu et al., 2017; Rondanelli et al., 2019), via the overturning of potential vorticity sur-
faces (Abatzoglou & Magnusdottir, 2006). The GFS output spans 2015–present, therefore we could not use
it to calculate return intervals. However, its greater spatial resolution improved our ability to diagnose poten-
tial vorticity gradients and wave breaking.

Semi‐distributed hydrologic modeling is employed to characterize antecedent land surface conditions and
their response to storm precipitation statewide. Daily, 7 km horizontal resolution, soil moisture percentiles
corresponding to the soil root zone depth (1.4–2.53 m) are estimated using the Variable Infiltration Capacity
model (VIC; Liang et al., 1994). These percentiles give a climatological perspective on soil root zonemoisture
conditions but do not explicitly provide soil saturation. Last, we provide a modeling experiment using the
Distributed Hydrology Soil Vegetation Model (DHSVM; Wigmosta et al., 1994) in the flood‐prone Russian
River watershed, where new approaches to reservoir management are being developed (Talbot et al., 2019).
This experiment highlights the value of soil moisture information for improving model initialization and
flood forecasting.

3. Large‐Scale Atmospheric Conditions

The Valentine's Day storm exhibited many common ingredients characterizing extreme winter season
storms at planetary to synoptic scales of motion. At 0600 UTC 13 February 2019 large‐scale atmospheric con-
ditions were characterized by amplified planetary waves and active cyclonic and anticyclonic RWB
(Abatzoglou & Magnusdottir, 2006; Thorncroft et al., 1993) over the western and eastern margins of the
North Pacific Basin, respectively (Figure 3a; supporting information Figure S1). The cyclonic RWB in the
western Pacific induces cyclogenesis and promotes the formation of a downstream ridge near the dateline
(180°W) and a persistent trough over the eastern Pacific (Moore et al., 2019). AR conditions (IVT exceeding
250 kg m−1 s−1; Ralph et al., 2019) with strong poleward and eastward transport of moisture were observed
along the eastern flanks of the high potential vorticity air (Figure 3a), consistent with RWB and diabatic for-
cing of cyclogenesis (Hu et al., 2017).

Equatorward of the planetary‐scale anticyclonic RWB, a zonally extended coupled polar and subtropical
trans‐Pacific jet stream exceeding 40 m s−1 existed with the divergent left jet exit region positioned over
northern‐central California. A surface cyclone was located offshore of the northern California coast under
the cyclonic shear side of the jet stream. The zonally extended middle‐upper tropospheric flow undercutting
an amplified ridge with axis near the dateline is a favorable scenario for heavy precipitation in California
(Underwood et al., 2009) with high snow levels (Hatchett, Daudert, et al., 2017). The upper level jet, antic-
yclonic RWB in the polar stream, and subtropical moisture connection promoted elevated atmospheric
moisture and moisture transport over southern California (Payne & Magnusdottir, 2014; Figures 3b–3c).
The southwesterly orientation of this moisture transport enhanced upslope water vapor flux and helped pro-
duce heavy orographic precipitation in mountains oriented perpendicular to onshore flow (e.g., Ralph
et al., 2013).

Two plumes of strong water vapor transport are evident in the IVT field (Figure 4a). Both displayed modeled
IVT values exceeding 1,000 kg m−1 s−1 but very different IWV values (Figure 4b). The northern plume 1 is
wind‐dominated, inferred from its lower values of IWV (30–40 mm) compared to the southern plume 2,
which had offshore IWV in exceedance of 50 mm. The northern plume made landfall in northern
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California while the southern plume made landfall in southern California. A vertical cross section from
aircraft observations transecting the AR core and perpendicular to the direction of mean moisture
transport (Figure 4c) further highlights the differing IWV and moisture transport characteristics of the
IVT plumes. Both plumes demonstrated elevated moisture fluxes deep into the midtroposphere
(850–700 hPa; Figures 4c and S2). The moisture in the southern plume extended above 500 hPa
(Figure 4c) and was transported poleward from the tropics by a northeastward‐moving Kona Low
(Morrison & Businger, 2001).

4. Record Southern California Atmospheric Moisture

A multitude of impacts occurred throughout Southern California (Figure 5) as a result of favorable
large‐scale atmospheric conditions for heavy precipitation. Record moisture availability and
above‐average soil moisture facilitated many precipitation‐related impacts. The GNSS/GPS network
observed IWV exceeding 30 mm throughout Southern California (Figure 5), with Point Loma observing a
peak value of 46 mm at 1715 UTC (Figure 6a). The IWV observation from the 1200 UTC 14 February

Figure 3. Large‐scale atmospheric conditions over the North Pacific Ocean and western North America at 0600 UTC 13
February 2019 from the 0.25° Global Forecast System final analysis. Shown in (a) are 330 K Isentropic Potential
Vorticity (PVU; filled contours), 200 hPa wind speed (solid maroon contour; m s−1), sea‐level pressure (solid black
contour; hPa), integrated water vapor (IWV; dashed blue contour; mm), integrated water vapor transport (IVT) vector
(plotted according to reference vector in upper right; kg m−1 s−1); (b) percentiles of 14 February 2019 IVT based
upon 1980–2018 MERRA‐2 winter (December–February; DJF) climatology (filled contours) and IVT values (black con-
tours; kg m−1 s−1); (c) as in (b) but for IWV (contours have units of mm).
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2019 radiosonde launched from Miramar, CA (Figure 6a), set a cool season (October–April) record at
42.7 mm. This value was supported by a 1500 UTC radiosonde launched at the SIO pier in La Jolla that
observed 45.4 mm (Figures 6a and S3). Offshore dropsonde‐derived IWV observations exceeded 50 mm
(Figure 4c), consistent with GNSS/GPS and satellite observations (Figure 2a). The large‐scale dynamics
(Figure 3a) and extreme IVT and IWV (Figures 3b–3c) promoted upslope water vapor flux (Neiman
et al., 2009; Figures 6b–6d), creating an environment conducive to orographically enhanced extreme
rainfall (Ralph et al., 2013).

To characterize land surface conditions before and after the Valentine's Day storm, we examined the soil
moisture conditions using the University of California Los Angeles drought monitor (available at http://
www.hydro.ucla.edu/SurfaceWaterGroup/forecast/monitor_ca/index.html; Mao et al., 2015; Xiao
et al., 2017). Soil moisture in the drought monitor is reconstructed by the VIC model following Bohn
et al. (2013). Precipitation fell on soils nearing saturation throughout Southern California due to wetter‐
than‐normal conditions resulting from previous AR landfalls, most notably a strong (AR 4) storm that made
landfall near Point Conception on 2 February 2019. Prior to the Valentine's Day event, soils were in the
upper quartile of modeled soil moisture percentiles relative to the 1920–2010 climatology of the VIC

Figure 4. Model simulations and aircraft observations of the atmospheric river. (a) Global Forecast System simulated sea
level pressure (open contours; hPa), integrated vapor transport (IVT; filled contours; kg m−1 s−1), and IVT vectors
for 0000 UTC 13 February 2019. Aircraft flight paths are shown by black lines with symbols. (b) Global Forecast System
simulated sea level pressure (open contours; hPa), integrated water vapor (IWV; filled contours; mm), and 850 hPa
wind vectors (m s−1) for 0000 UTC 13 February 2019. The black lines in (a) and (b) show flight paths and the triangles
denote dropsonde release locations from the aircraft. (c) Dropsonde‐derived vertical cross section of equivalent
potential temperature (θe), wind barbs (m s−1), and water vapor flux across the two IVT plumes identified in (a). The
lower panel of (c) shows cross sectional IVT (black line) and IWV (dashed red line).
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model (Figures 2b and 5). These conditions favored runoff generation in both the uplands and lowlands.
Ephemeral washes in the Palm Springs Desert observed the greatest flows since records began in 1987
(Figure 5). A debris flow in Chino Canyon damaged the Palm Springs Aerial Tramway (Desert Sun, 2019).
Peak flows along inland‐draining rivers with longer periods of record were notable. Many ocean‐draining
and urbanized rivers also achieved flow rates that exceeded the top 3% of flow rates on record (yellow
triangles in Figure 5). For example, the Mojave River reached the top 0.2% of flows since observations
began in 1930. Rainfall‐triggered mass movements were not confined to southern California; landslides
were also documented in the San Francisco Bay area (Collins & Corbett, 2019) and in the western
foothills of the Sierra Nevada.

Rainfall was extreme in measures of intensity and total accumulations. The National Weather Service
Cooperative Observer rain gauge at Palomar Observatory (elevation 1,702 m), in northern San Diego
County, measured 256 mm of rainfall in 24 hr. This was the highest 24‐hr total since record keeping began
in 1943. A colocated, sub‐hourly ALERT gauge observed a similar total with periods of intense rainfall
(Figure 6c) likely corresponding to the development of stronger convective cells. Many mountain regions
in southern California observed rain rates exceeding U. S. Geological Survey general guidance for 15‐min
intensity‐duration thresholds for triggering post‐fire debris flows (ranging between 12.5 and 21.8 mm hr−1;
Cannon et al., 2008; Staley et al., 2017). Hyperconcentrated flows and alluvial fan flash floods were
observed in recently burned regions such as the Holy Fire (Figure 5) where 12‐hr precipitation totals
exceeded the 200‐year return interval causing widespread flash flood impacts. The extreme precipitation
at Snow Valley combined with snow levels exceeding 3 km contributed to full‐path avalanches in the
San Gorgonio Mountains (Figures 5–6). Numerous landslides in the San Gabriel Mountains occurred, with
one causing a 30‐km segment of the Angeles Crest Highway to be closed for 8 months (Burgess et al., 2019;
Figure 5).

Figure 5. VIC‐estimated soil moisture percentiles in Southern California on 16 February 2019 (filled contours) and soil
moisture percentile changes between 12 and 16 February 2019 (open contours). Colored dots indicate peak event
integrated water vapor (IWV; mm) at GNSS/GPS sensors. Icons denote observed impacts and red stars indicate
observation locations.
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5. Observations and Impacts in California's Sierra Nevada and
Southern Cascades
5.1. Snow Level Variability

Abrupt changes in snow level often accompany winter storms with varying impacts on hydrology, recrea-
tion, and transportation (White et al., 2019). Rises in snow level correspond to increases in streamflow as
the advection of warm, moist air facilitates snowmelt and a growing fraction of the watershed receives rain-
fall (Hatchett et al., 2016, 2018; White et al., 2010). Snow level oscillations exceeding 1,000 m and exceeding
durations of 30 min were observed in the Sierra Nevada, with the ultimate snow level rise progressing from
south to north (Figure 7). The varied timing and duration of these oscillations indicates mesoscale variability
in snow level conditions throughout the Sierra Nevada (Minder et al., 2011; Minder & Kingsmill, 2013).
Operational weather models have difficulty simulating variable situations, as demonstrated in the suite of
California‐Nevada River Forecast Center (CNRFC) freezing level forecasts (Figures 7c–7d). These difficulties
arise from microphysical processes that may not be well‐resolved in operational models due to parameteri-
zation schemes and grid spacing (Minder & Kingsmill, 2013). Melting level forecast errors were also found to
increase both with lead time and increasing rain‐snow transition elevation (Henn et al., 2020). Although
some CNRFC ensemble members correctly approximate snow level rise timing and magnitude
(Figures 7a–7b), many estimate the snow level to be more than 1,000 m lower than the level observed by
the radar. This bias may lead to errors in streamflow forecasts in snow‐dominated watersheds (e.g., White
et al., 2010).

Figure 6. Southern California observations during 13–15 February 2019. (a) Time series of GNSS/GPS‐derived IWV
(mm) at Point Loma, Long Beach, and the Santa Barbara Atmospheric River Observatory (ARO) and radiosondes
from Miramar and the Scripps Institution of Oceanography. (b) Sub‐hourly precipitation at Snow Valley ALERT gauge
(blue bars; mm) and cumulative precipitation (red line; mm) with San Bernardino snow levels (blue dots; km*10−2).
Image of the Mt. San Gorgonio avalanches (photo credit: Mike Nobriga via the So Cal Avalanche Center, http://www.
socalsnow.org/avalanche-report-2-19-19-san-gorgonio.html). (c) As in (b) but for Palomar Mountain ALERT gauge.
Newport Beach photograph provided by Royce Hurtain. (d) Upslope integrated water vapor flux (cm*m s−1), calculated
by multiplying IWV and the upslope wind speed 1 km above the surface, obtained from the Santa Barbara ARO (Neiman
et al., 2009). The shaded blue bar denotes the approximate time period of the peak upslope water vapor flux.
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Expressing snow levels as percentiles provides another perspective of the
magnitude of snow level variability during this event (Figure 8).
Percentiles are calculated using 10 min data for the December–February
period over the respective periods of record for each radar (>5 years).
Consistent with near‐freezing temperatures at Shasta Dam (Figure 9a),
low snow levels (bottom tenth percentile) were observed before rising into
the upper fifteenth percentile. The absence of a brightband (Figure 9a)
despite precipitation observations (Figure 9b) resulted from the bright-
band elevation being below the radar site. In the northern and central
Sierra Nevada, snow level oscillations occurred between the upper and
lower quartiles at Oroville, Colfax, and New Exchequer (Figure 8). This
created varying snowpack responses with elevation (Figures 9e–9f). The
lower elevation Blue Canyon and Greek Store snow pillows showed snow
depth decreases throughout the event whereas depth increased at Mount
Rose, a higher elevation station (Figure 9e). Snow water equivalent
increased at all stations except Blue Canyon (Figure 9f). The increased
streamflow following the snow level oscillation was realized at the
Middle Forks of the American and Cosumnes River (Figure 9g) at
approximately 1600 UTC 13 February 2019 and 0000 UTC 14 February
2019, respectively.

Figure 8. Ten‐minute snow level percentiles for seven snow level radars in
California spanning the period 2000 UTC 12 February 2019 to 0000 UTC 15
February 2019. Ordered from north to south, stations names are Shasta
Dam (STD), Oroville (OVL), Colfax (CFF), New Exchequer (NER), Pine
Flat Dam (PFD), Kernville (KNV), and San Bernardino (SBO).

Figure 7. Snow level oscillations and California‐Nevada River Forecast Center (CNRFC) freezing level forecasts from
north to south in Region II. Time series of snow levels at (a) Shasta Dam (STD), (b) Oroville (OVL), (c) Colfax (CFF),
and (d) New Exchequer (NER) snow level radar brightband heights (m; shown as symbols for each site), CNRFC freezing
level forecasts (colored lines; m), and freezing level based on radar brightband heights (m; computed by adding 200 m to
each brightband value to account for the typical vertical distance between freezing level and snow level; Lundquist
et al., 2008; White et al., 2010) for the period spanning 0000 UTC 13 February to 1200 UTC 15 February 2019. Each radar
location's elevation is shown as a dashed black line. The inset map shows locations of all snow level radar observations
used in the study.
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Snow level observations in the southern Sierra Nevada showed different responses than those in the north.
Sporadic observations between 1300 and 1800 UTC 13 February 2019 at Pine Flat Dam and Kernville
(Figure 8) demonstrate the transition region between the northern and southern IVT plumes
(Figures 4a–4b). We interpret these observations as representing the equatorward boundary of the initial
wave of precipitation associated with the northern moisture plume. The southern moisture plume is char-
acterized by high (top tenth percentile) snow levels throughout its duration at Kernville and San
Bernardino, consistent with 0°C elevations exceeding 4,000 m observed by offshore dropsonde measure-
ments (Figure S2). Brightband observations at San Bernardino began approximately 6 hr before Kernville
and no brightband was observed further north until 2000 UTC 14 February 2019 when cold frontal passage
occurred (Figure 9a). This suggests the southern plume only impacted Southern California, and is consis-
tent with the termination of brightband observations at New Exchequer at 1600 UTC 13 February
(Figure 8).

Figure 9. Time series of southern Cascades/northern Sierra Nevada observations from surface meteorological stations
for the period spanning 2000 UTC 12 February 2019 to 0000 UTC 15 February 2019. (a) Near‐surface (2 m)
temperature (left axis; solid lines; °C) and snow level (right axis; colored dots; km) with black lines and dots
corresponding to the Colfax station and blue lines and dots corresponding to the Mt. Shasta Dam station. (b)
Accumulated precipitation (left y axis; mm) and 20 min precipitation (blue bars; right y axis; mm), (c) wind speed and
gust (both in m s−1), and (d) direction (°) along the Sierra Nevada Crest (Siberia Ridge; in red) and south of Mt. Shasta
(Gray Butte; black), (e) snow depth change (cm), (f) snow water equivalent (SWE) change (mm), and (g) streamflow
(cms). The vertical red line corresponds to the timing of the Avalanche Gulch avalanche observation diagnosed from the
seismic network on Mt. Shasta (section 5.3). Station locations are shown in Figures 1d and 10.
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5.2. Snow Impacts on Mountain Transportation

Many of California's main transport routes pass through mountainous regions and are susceptible to clo-
sures or delays that impact economic activity. During 13 February 2019, snow levels were among the
lowest 5% of hourly observations during the past decade (2010–2019; Figure 8) at the Shasta Dam snow
level radar site (elevation 202 m) before the brightband elevation fell below the station elevation
(Figure 9a). Over 20 cm of snowfall was recorded in Redding, California (172 m), an uncommon occur-
rence in this area. Mount Shasta City (1,000 m) recorded 60 cm of snowfall (Mount Shasta Avalanche
Center, 2019). This heavy low elevation snowfall slowed interstate commerce along Interstate 5 from
the normal average of ~61,000 vehicles day−1 to ~24,000 vehicles (California Department of
Transportation (Caltrans), 2019). Traffic restrictions along Interstate 80 over the Sierra Nevada, a major
east‐west highway (average annual daily traffic of 35,000), began at 1800 UTC 13 February 2019 with a
full closure from 0200 UTC 14 February 2019 to 0100 UTC 16 February 2019. Using average annual daily
traffic volumes for each road with truck percentages of 12%, and a delay cost of $0.46 min−1 for trucks
and $0.24 min−1 for cars (California Department of Transportation (Caltrans), 2019), we estimate net
commerce loss to be on the order of $21 M during the Valentine's Day storm for these two major high-
ways. This value represents a minimum estimate as delay costs for other impacted roads, such as
Highway 50, and costs of repairs to damaged roads (e.g., Angeles Crest Highway; section 4) are not
included.

5.3. Mount Shasta Avalanche Timing and Triggering

Here we show how geologic observations can be leveraged to provide further insight into impacts from this
storm. At approximately 1800 UTC 14 February 2019, evidence of a very large (R4/D4.5; Figures 10a–10b)
avalanche with a 5 km path length (Figure 10c) was discovered in the Avalanche Gulch on the southwestern
flank of Mount Shasta. Avalanche Gulch is a glacially sculpted canyon composed of steep sidewalls with
numerous start zones at elevations between 3,000 and 4,000 m. Avalanche paths converge in the canyon bot-
tom and terminate in gently sloping forested terrain 1,000 m below. Depositional debris from this avalanche
was approximately 10–20 m deep with 10 m tall flanks (Figure 10b). Avalanches of this magnitude onMount
Shasta are relatively rare, occurring on decadal scales (Hansen & Underwood, 2012).

The addition of over 80 mm of snow water equivalent (Figure 9f) is consistent with snowpack instability
caused by continuous loading of new snow during AR events (Hatchett, Burak, et al., 2017). The Mount
Shasta Avalanche Center advisory for 13 February was “high,” indicating naturally triggered large ava-
lanches are likely. Synoptic conditions (section 3) were consistent with those previously linked to large
Mt. Shasta avalanches (Hansen & Underwood, 2012).

In the absence of human observations, the local seismic network (Figures 10d–10f) can be used to con-
strain the avalanche timing. The network recorded a high‐energy spindle‐like signal emerging from the
background noise at 1022 UTC 14 February 2019 that lasted for ~2 min, followed by ~20 min of
increased seismic energy. The waveforms observed at each station are broadband with frequencies ran-
ging from 1–15 Hz and are dominated by energy between 2 and 5 Hz. These characteristics have been
tied to avalanche activity by Kishimura and Izumi (1997). The signal duration (~2 min) and avalanche
path length (5 km) yield an avalanche velocity of 42 m s−1, consistent with dry or mixed slab avalanches
(Vilajosana et al., 2007). The two increases in energy within the wavetrain (Figure 10d) suggest distinct
pulses in the avalanche process. Potential cultural origins of the seismic signal, notably train operations,
were ruled out via spectral analysis and a second, smaller avalanche possibly occurred at 1740 UTC 14
February 2019.

Constraining the avalanche timing provides insight into potential triggering mechanisms. The avalanche
occurred many hours after snow levels rose (Figure 9a), however the “upside‐down” nature of the snowpack
(more dense snow deposited atop less dense snow) inferred from lower snow levels followed by high snow
levels (section 5.1) favors snowpack instability. Regional winds from the ground‐based observations
(Figure 9c) and the Oroville and Twitchell Island wind profilers (Figure S4) indicate accelerations in
low‐level (2–4 km; ~850–700 hPa) winds to 25 m s−1 at 0400 UTC 14 February with a turning of upper level
winds to a more southeasterly direction (Figure 9d). These winds are reminiscent of the Sierra Nevada bar-
rier jet that enhances northward moisture flux in the Central Valley (Neiman et al., 2013; Parish, 1982),
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increases precipitation in the northern Sierra Nevada and southern Cascades (Ralph et al., 2016), and helps
establish the Shasta County Convergence Zone (Roberts, 2019; Figure 9b). Although the avalanche initiated
on a southerly aspect normally scoured by prevailing southwesterly winds, deposition on this slope may
have resulted from interactions of southerly winds aloft (Figures 9d and S4) with Mt. Shasta. The
low‐level westerly flow at the Gray Butte (Figure 9d) station on the south flank of Mt. Shasta, despite
southerly flow aloft (Figure S4), suggests airflow interactions with the mountain. Snow levels did not rise
above 3 km (Figure 9a), rendering it unlikely that free‐water introduction (Prowse & Owens, 1984) played
a role in avalanche initiation in the start zone of Avalanche Gulch. In contrast, the San Gorgonio
avalanches (section 4) appeared to have occurred much closer in elevation (within 500 m) to the
snow/rain transition elevation (Figure 6).

Figure 10. The Mt. Shasta avalanche. (a–b) Images of the avalanche from the runout zone (skiers for scale; images courtesy of Mike Hupp). (c) Avalanche path
map provided by the Mount Shasta Avalanche Center. (d–f) Seismic signals from three seismometers located on the southwestern flank of Mount Shasta (times in
UTC). (g) Location map of the seismic stations (triangles) and the Gray Butte weather station (colocated with LGY).
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6. Soil Moisture Improves Russian River Streamflow Forecasts
6.1. Hydrologic Modeling Approach

To provide a direct example of how observations from the Valentine's Day storm can be used for hydrologic
modeling in a flood‐prone watershed, we conducted an experiment applying the Distributed Hydrology Soil
Vegetation Model (DHSVM; Wigmosta et al., 1994) to the Russian River watershed in northern California
(Region III in Figure 1b; see also Figure 1d inset). This watershed was among the first to have AR‐flood
relationships identified in California (Ralph et al., 2006). As a result, AROs and dense hydrologic
monitoring instrumentation (Sumargo et al., 2020; White et al., 2013) were installed to inform flood man-
agement. In recent years, this basin has served as a proof‐of‐concept watershed for testing the viability of
forecast‐informed reservoir operations aimed at improving flood control and water supply operations
(Talbot et al., 2019).

The goal of the Russian River modeling experiment is to examine the potential use of soil moisture sensors
in model initialization and flood forecasting. We used the same model implementation as in Cao et al.
(2019), in which calibration was performed for the period 2005–2014 at multiple stream gages. We used
12 HMT soil moisture sites (Figure 11a) with at least 3 years of data and included measurements during
the Valentine's Day storm. The DHSVM as applied to the Russian River basin has three root zone soil layers
with depths at 10, 35, and 75 cm. We extended the 1/32° horizontal resolution gridded, hourly precipitation
data used as input to the model and developed by Cao et al. (2019) through the Valentine's Day event
(Figures 11b–11c). We note that due to its low elevation (0–1,200 m; 90% of the watershed is below

Figure 11. Hydrologic modeling results from the Russian River watershed. (a) Map of the Russian River basin,
with locations of USGS stream gages and Hydrometeorology Testbed (HMT) soil moisture observation sites shown.
(b) Map of storm total precipitation. (c) Time series of hourly basin‐average total precipitation and total precipitation as
rain and snow. Observed and simulated hourly streamflow time series during the storm at upstream USGS gages
(d) 11461500 and (e) 11467000. Gage 11467000 is impacted by reservoir operations at Lake Mendocino and Lake Sonoma,
the effect of which has been removed in the observed streamflow time series shown.
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630 m), the Russian River basin is not a snow‐dominated watershed. Thus, we do not expect streamflow
responses to be related to snow level variability (e.g., section 5.1) as in snow‐dominated catchments in
the Sierra Nevada (White et al., 2010). Virtually no precipitation during this event fell as snow over the
Russian River basin (Figure 11c).

We used the HMT measurements at depths of 10, 15, and 50 cm (the deepest measurement depth at most
sites) as the corresponding model layers. In order to reconcile the soil moisture range difference in observa-
tions and the model, we converted both to hourly soil moisture percentiles relative to extended winter
(November–March spanning 2017–2019) for each layer. We updated the model throughout the storm at a
daily interval at midnight local time (0700 UTC) using a simple direct insertion approach for all soil layers.
The observed soil moisture percentiles were interpolated over the basin using a Gaspari‐Cohn function
(Gaspari & Cohn, 1999) with a radius of 20 kmwhere the weight decreased as the distance between an obser-
vation site and a target model grid cell increased (Figure 11a). We then interpolated the percentiles back to
model values to update the soil moisture initialization state. We examined the effects of updating for the sur-
face soil layer only, the upper two layers, and all three layers. We then explored the effects of this procedure
at two USGS streamflow gages, the unimpaired upstream gage above Lake Mendocino (11461500;
Figure 11a) and the downstream‐most gage (11467000), which is influenced by reservoir operations at
Lake Mendocino and Lake Sonoma (Figure 11a). We obtained the naturalized flows at the latter gage by cal-
culating the difference of simulated streamflow with and without a reservoir module at this gage and then
adding the difference back to its observations, following Cao et al. (2019). We used the Kling‐Gupta effi-
ciency (KGE; Gupta et al., 2009) to evaluate the goodness‐of‐fit between hourly streamflow observations
and hourly simulations at these two gages. KGE facilitates analysis of the various statistical components
of the Nash‐Sutcliffe efficiency, which is an objective method to evaluate runoff performance in hydrologic
models.

6.2. Modeling Results

Soil moisture observations can provide information for situational awareness and model initialization on
antecedent wetness conditions of a basin, a critical factor for flood forecasting (e.g., Brocca et al., 2010;
Leroux et al., 2016; Zhang et al., 2016) as well as landslide forecasting (e.g., Godt et al., 2006; Thomas
et al., 2018). Results showed that the KGE during the storm (0800 UTC 13 February 2019 to 0800 UTC 16
February 2019) increased from 0.19 to 0.42 by updating the surface layer, from 0.19 to 0.54 by updating
the top two layers, and 0.19 to 0.66 by updating all three layers at the upstream USGS gage 11461500
(Figure 11d). This heavily instrumented gage is surrounded by 7 out of 12 HMT sites in the Russian River
watershed. Improvements increased as observations from deeper depths were included. However, the
KGE at the downstream‐most USGS gage 1146700 did not increase with each additional depth
(Figure 11e). The KGE changed from 0.89 to 0.95, 0.90, and 0.70, respectively, with updates of the uppermost
layer only, upper two layers, and all three layers. This result is possibly due to the sparse distribution of the
downstream HMT sites (Figure 11a) and the influence of historical calibration at different stream gage loca-
tions. Although these results are for a single storm, they do have implications for placement of soil moisture
stations and for the manner in which the updating is performed. These results suggest that flood forecasting
is likely to benefit from both measurements at depths beyond the surface layer and a denser spatial distribu-
tion of soil moisture observations in the drainage area of interest. These measurements also support land-
slide hazard monitoring (Thomas et al., 2019).

7. Discussion

ARs drive extreme hydrometeorological events and hydroclimate variability worldwide (Paltan et al., 2017).
Impacts from ARs, especially in California, are expected to increase in a warming and increasingly variable
climate (Gershunov et al., 2019). Data provided by California's multitiered observational network facilitate
development of conceptual linkages between natural hazards and meteorological or hydrological precursor
and triggering conditions during ARs. With respect to forecasting and from an event‐based perspective, we
find that:

1. Linkages are deepened by incorporating additional observational networks, such as the GNSS/GPS net-
work and ALERT gauges (section 4) or seismic networks (section 5.3).

2. Regionally specific information advances a comprehensive perspective of the event.
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3. Aircraft‐based observations provided unique perspectives regarding the structure and intensity of the AR
offshore (section 3).

4. Assimilation of targeted offshore data into numerical weather predictionmodels in otherwise data‐sparse
regions (e.g., the North Pacific) demonstrates promise for improving forecast skill (Demirdjian et al.,
2020; Stone et al., 2020).

5. Incorporation of model products, such as VIC soil moisture percentiles, provides useful information for
anticipating impacts from forecast events.

6. Soil moisture before and following the event (Figures 2b–2c and 5) indicates when steepland regions are
likely to produce runoff if additional precipitation occurs.

7. Soil moisture conditions following the Valentine's Day storm suggest continued widespread natural
hazard risks from flooding (Cao et al., 2019), mass wasting (Oakley, Lancaster, et al., 2018), and degraded
coastal water quality (Aguilera et al., 2019).

8. Soil moisture observations improved hydrologic model flood forecasts (section 6).

The present study, as well as other work utilizing data from the network (e.g., Martin et al., 2018; Ralph
et al., 2013; Sterle et al., 2019; Sumargo et al., 2020; Wang et al., 2019; White et al., 2019), indicates the net-
work is capable of achieving the goals outlined in Ralph et al. (2014) and White et al. (2013). These goals
include the following:

1. Improved understanding of physical processes, model limitations, and climate trend analysis (Ralph
et al., 2014).

2. Direct characterizations of extreme events and how they can inform resource and hazards management.

The high temporal resolution of the network and diverse data sources (e.g., models, aircraft, and in situ)
documents and provides deeper understanding of various event outcomes that otherwise may be missed.
Examples include the following:

1. Verifying the record precipitable water in southern California (section 4).
2. Reporting the dramatic oscillations in snow level in northern California and the Sierra Nevada

(section 5.1).
3. Constraining the timing of the Mt. Shasta avalanche (section 5.3).

Knowledge of these outcomes can be leveraged to identify weaknesses in numerical model output, such as
CNRFC freezing level forecasts (section 5.1). Given how warm the Valentine's Day storm was, errors in
model freezing levels are expected to be larger than normal circumstances (Henn et al., 2020). The magni-
tudes of snow level oscillations, which nearly spanned the range of historic observations (Figure 8), provide
a scenario for model experiments aimed at improving snow level forecast skill.

In challenging forecast scenarios, such as low or variable snow levels (sections 5.1–5.2), model validation is
performed in real‐time at coastal AROs (Figure S5) and at snow level radar sites (Figure S6; Ray &
White, 2019). AROs combine numerous observations with short‐term high‐resolution model simulations
to enhance short‐term forecasting for these situations. This “Integrated Water Vapor Flux Tool” (Neiman
et al., 2009; Figure S5)wasfirst used in conjunctionwith rapidly updating forecastmodels (White et al., 2012),
but now exists with multiple operational and research versions of weather models (e.g., Cordeira et al., 2017;
Ray & White, 2019). The water vapor flux tool provides a recent history of key parameters associated with
observed AR‐related features such as upslope water vapor flux, precipitation, and recent model forecast per-
formance. This information can influence forecaster confidence regarding the next 12‐hr forecast period and
impact‐based decision support (Uccellini & Ten Hoeve, 2019) on issuing or extending weather‐related warn-
ings based onwhether or not heavy precipitation is forecast to continue. We recommendmodel forecasts and
recent verification statistics be expanded to all suites of instruments, such as the GNSS/GPS sensors and
snow pillows, especially as modeling capabilities move toward ensemble‐based, probabilistic forecasts
(e.g., National Blend of Models; Hamill et al., 2017). Discovering model weaknesses in reproducing observed
phenomena, such as freezing level variability (Henn et al., 2020), motivates targeted improvements in fore-
cast skill (e.g., Olson et al., 2019). These improvements can enhance public and emergencymanagement pre-
paredness and response during, and following, extreme events.

The importance of snow and freezing level oscillations (section 5.1) in operational runoff forecasts is an
example of how improved forecasts and process‐based understanding can benefit water management.
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This is a key aim of the multitiered observational network (Ralph et al., 2014; White et al., 2013). Snow
level variability at the mountain range scale means the water conveyance system should be managed
between different operator groups to ensure reservoir releases can be made with minimal downstream
flood impacts while keeping within reservoir operational constraints (White et al., 2010). Our analysis
of the impact of the snow level oscillations and streamflow responses in the northern Sierra Nevada
(Figure 8) is limited by the daily resolution of upstream reservoir storage data along the Middle Fork
of the American River. To overcome these challenges of reservoir management in snow‐dominated water-
sheds, we note that:

1. Sub‐daily reservoir storage data are needed to address whether streamflow responses are natural or the
result of reservoir operations.

2. Sub‐daily observations of soil moisture, precipitation, and streamflow on both impaired and unimpaired
river basins are needed to evaluate physical drivers of hydrologic responses and facilitate calibrating
models aimed at reproducing these responses (section 6).

3. High‐resolution soil moisture and precipitation observations in complex terrain would improve the abil-
ity to provide landslide early warnings.

The increasing exposure of life and property to natural hazards amidst climate change and population
growth virtually demands integrated observational networks to support long‐term management goals
(Lundquist et al., 2016). Improving the real‐time accessibility of observational data from the kinds of diverse
networks explored here is a necessary step if these data are to be used tomeet goals of achieving water supply
reliability, flood risk management, and the understanding of and resiliency to other extreme events (e.g.,
mass movement, wildfire, and heat extremes). These networks contribute toward improved understanding
of current hydroclimate conditions, predictions of how different environments will respond to extreme
events under various antecedent conditions, and assessments of forecast performance. The complexity of
natural systems presents a challenge for quickly characterizing the range of possible outcomes from a given
extreme event. In the case of California's network, many of these observations have been collected over var-
ied antecedent conditions in the past decade. This allows events to be placed into the context of past extreme
climate conditions over longer timescales (e.g., Hatchett et al., 2018; Sterle et al., 2019). Additional confi-
dence in understanding potential outcomes allows focused efforts on mitigating impacts, a key goal of deci-
sion support (Uccellini & Ten Hoeve, 2019).

8. Concluding Remarks

California's multitiered network of diverse observations provides real‐time information pertinent to the ana-
lysis of extreme events. These observations help characterize triggering mechanisms and impacts for a vari-
ety of natural hazards, and thus can make natural hazard risk mitigation more achievable through
improvements in forecasting and decision support aimed at timely resource positioning. Our goal was to
explore and illustrate the utility of California's uniquely diverse collection of networks by exploring the phy-
sical origins of impacts during the 2019 Valentine's Day winter storm. We conclude that California's obser-
vational network is successfully implementing ideas that emerged from multiagency planning efforts
(summarized in Ralph et al., 2014, and White et al., 2013) and of testing and demonstration carried out
through the NOAA Hydrometeorology Testbed (Ralph et al., 2013; White et al., 2012).

Components of the network with many years of observations, such as snow level radar, soil moisture, and
GPS water vapor, can now be used to place extreme events into climatological context and establish the base-
line for regional hydroclimate conditions (e.g., Cao et al., 2019; Hatchett, Daudert, et al., 2017; Sterle
et al., 2019). By helping identify drivers of hydrometeorological impacts in sensitive ecosystems or to
values‐at‐risk, the network can provide a basis for prioritizing future investments and studies aimed at miti-
gating risks and enhancing the reliability of local and regional water resources (Ralph et al., 2014; White
et al., 2013). Further investments in maintaining and enhancing these observational networks will be neces-
sary in a changing world (e.g., Lundquist et al., 2016; Mensing et al., 2013). Process‐based understanding and
subsequent improvements in forecast confidence at longer lead times will translate into better decision sup-
port during events and can inform longer‐term shifts to the water management landscape. California's net-
works provide a basis for continually improving early warning and emergency response times during events
like the 2019 Valentine's Day storm by providing up‐to‐date and actionable information.
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